Unbounded Disjointness Preserving Linear Functionals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbounded Disjointness Preserving Linear Functionals

Let X be a locally compact Hausdorff space and C0(X) the Banach space of continuous functions on X vanishing at infinity. In this paper, we shall study unbounded disjointness preserving linear functionals on C0(X). They arise from prime ideals of C0(X), and we translate it into the cozero set ideal setting. In particular, every unbounded disjointness preserving linear functional of c0 can be co...

متن کامل

Weak disjointness of measure preserving dynamical systems

Two measure preserving dynamical systems are weakly disjoint if some pointwise convergence property is satisfied by ergodic averages on their direct product (a precise definition is given below). Disjointness implies weak disjointness. We start studying this new concept, both by stating some general properties and by giving various examples. The content of the article is summarized in the intro...

متن کامل

Almost multiplicative linear functionals and approximate spectrum

We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is...

متن کامل

Holomorphic Mappings Preserving Minkowski Functionals

We show that the equality m1(f(x)) = m2(g(x)) for x in a neighborhood of a point a remains valid for all x provided that f and g are open holomorphic maps, f(a) = g(a) = 0 and m1, m2 are Minkowski functionals of bounded balanced domains. Moreover, a polynomial relation between f and g is obtained. Next we generalize these results to bounded quasi-balanced domains. Moreover, the main results of ...

متن کامل

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte f�r Mathematik

سال: 2004

ISSN: 0026-9255,1436-5081

DOI: 10.1007/s00605-003-0045-2